
PK/PD Modelling using
Stochastic Differential Equations
FMS and DSBS Workshop

Henrik Madsen

DTU Informatics

hm@imm.dtu.dk

Henrik Madsen 1



Outline

1 Why Stochastic Differential Equations?

2 The grey box modelling concept

3 The Stochastic State Space Model

4 Wrong Error Model gives Wrong Dose

5 Identification, Estimation and Model Validation

6 Identification of Model Structure

7 Software

8 Nonlinear Mixed Effects Models with SDEs

9 Example: Diabetes

10 Systematic Modelling Framework

11 Example: PK/PD Modelling of the HPG Axis

12 Summary

Henrik Madsen 2



Problem Scenario

Ordinary differential equation

dA = −KA dt

Y = A + ǫ
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ODE
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� Correlated residuals!!
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Problem Scenario

Stochastic differential
equation

dA = −KA dt + dw

Y = A + e
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ODE vs SDE
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� Correlated residuals

� System noise

� Measurement noise
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ODE vs SDE
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The grey box modelling concept

� Combines prior physical knowledge with information in data.

� The model is not completely described by physical equations, but
equations and the parameters are physically interpretable.

Data

Knowledge
Prior

White Grey Black

Physical
knowledge

Deterministic
equations

submodels
Detailed

Input−output
representation

Databased

The box in the middle (denoted Grey) may be expressed as the
relationship between the amount of prior knowledge and data
available.
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Why use grey box modelling?

� Prior physical knowledge can be used.

� Non-linear and non-stationary models are easily formulated.

� Missing data are easily accommodated.

� It is possible to estimate state variables that are not measured.

� Available physical knowledge and statistical modelling tools is
combined to estimate the parameters of a rather complex
dynamical system.

� The parameters contain information from the data that can be
directly interpreted by the scientist.

� Fewer parameters→ more power in the statistical tests.

� The physical expert and the statistician can collaborate in the
model formulation.
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Stochastic Differential Equations (SDE’s)

ek

� The line demonstrates a model prediction, whereas the dots
denote typical observations.

� Notice: Autocorrelated residuals are most often seen
- calls for using Stochastic Differential Equations (SDE’s) as an

alternative to Ordinary Differential Equations (ODE’s).
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The continuous-discrete time non-linear stochastic state
space model
– The system equation (a set of Itô stochastic differential
eqs.)

The system equation consists of a drift and a diffusion term.

dX t = f (X t ,U t , θθθ) dt + G(X t ,U t , θθθ) dW t , X t0 = X 0

Notation
X t ∈ R

n State vector
U t ∈ R

r Known input vector
f Drift term
G Diffusion term
W t Wiener process of dimension, d , with incre-

mental covariance Qt

θθθ ∈ ΘΘΘ ⊆ Rp Unknown parameter vector
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The observation equation

The observations are in discrete time, functions of state, input, and
parameters, and are subject to noise:

Y ti = h(X ti ,U ti , θθθ) + eti

Notation
Y ti ∈ R

m Observation vector
h Observation function
eti ∈ R

m Gaussian white noise with covariance ΣΣΣti

Observations are available at the time points ti : t1 < . . . < ti < . . . < tN
X 0,W t ,eti assumed independent for all (t , ti), t 6= ti
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Advantages of using SDE’s

� Provides a decomposition of the total error into process error and
measurement error.

� Facilitates use of statistical tools for model validation.

� Provides a systematic framework for pinpointing model
deficiencies – will be demonstrated later on.

� Covariances of system error and measurement error are
estimated.

� SDE based estimation gives more accurate and reliable
parameter estimates than ODE based estimation.

� SDEs give more correct (more accurate and realistic) predictions
and simulations.

� SDEs give more correct dose (see the following example)
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Example: Glucose/Insulin system

� Model predicting the
insulin concentration
having glucose as
input

� Wrong error model
gives wrong dose!

� SDEs give more
reliable estimates of
covariate effects

J.B. Møller et.al.: Predictive performance for population models using stochastic differential equations applied on data from an oral glucose

tolerance test, Journal of PK/PD, 2009
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Methods for Identification, Estimation and Model Validation

� Model Identification: See the next slide.
� Parameter Estimation:

− (Approx.) Maximum Likelihood Methods
− Estimation Functions
− Prediction Error Methods

� Model Validation:
− Test whether the estimated model describes the data.
− Autocorrelation functions – or Lag Dependent Functions.
− Other classical methods ...
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Identification of Model Structure

� The diffusion term gives information for pinpointing model
deficiencies.

� Assume that we based on ’large’ values of relevant diffusion
term(s) suspect r ∈ θθθ to be a function of the states, input or time.

� Then consider the extended state space model :

dX t = f (X t ,U t , θθθ) dt + G(X t ,U t , θθθ) dW t , X t0 = X 0

drt = dW ∗
t

Y ti = h(X ti ,U ti , θθθ) + eti

(1)

which corresponds to a random walk description of rt .
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Identification of Model Structure

� Do we observe a significiant reduction of the relevant diffusion
term(s)?

� In that case calculate the smoothed state estimate r̂t |N (use for
instance the software tool CTSM - see the next slide).

� Plot r̂t |N versus the states, inputs and time.

� Identify a possible functional relationship.

� Build that functional relationship into the stochastic state space
model.

� Estimate the model parameters and evaluate the improvement –
using e.g. likelihood ratio tests.
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Continuous Time Stochastic Modelling (CTSM)

� The parameter estimation is performed by using the software
CTSM.

� The software has been developed at IMM.

� Download from: www.imm.dtu.dk/ctsm

� The program analyses the model equations to determine the
symbolic names of the parameters to fix and which to estimate.

� The program returns the uncertainty of the parameter estimates
as well.
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Continuous Time Stochastic Modelling (CTSM)
– Linear case
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Continuous Time Stochastic Modelling (CTSM)
– Non-linear case
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Population Modelling – Introduction

� Data originating from several population members/subjects

� Identical experiments

� More data - better estimates of parameters and uncertainties.

� Software: Population Stochastic Modelling (PSM)

� Software download: www.imm.dtu.dk/psm
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Population Modelling – Introduction

� Data originating from several population members/subjects

� Identical experiments

� More data - better estimates of parameters and uncertainties.

� Software: Population Stochastic Modelling (PSM)

� Software download: www.imm.dtu.dk/psm

Nonlinear mixed effects model with SDEs
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Population Modelling – Stages

A population model consists of 2 stages

� 1st stage models the process variation within a single population
member/subject

� 2nd stage models the variation in parameters between population
members/subjects like:

φφφi = g(θθθ,Z i) · exp(ηηηi)

ηηηi ∈ N(0,ΩΩΩ)
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Population – Parameter estimation

Parameter estimation using likelihood theory

� Single member/subject - likelihood based on product of
conditional densities for each time series of length ni (called p1

below).

� Population likelihood is a combination of the random effects η
and the single member likelihoods

L(θθθ|YNni ) ∝

N∏

i=1

∫
p1(Yini |φφφi)p2(ηηηi |ΩΩΩ)dηηηi
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Diabetes in figures

� 150.000 diagnosed with diabetes in Denmark
− Treatment costs 2.5B kr./year
− 150.000 unaware of their diabetes condition

� 171 millions diagnosed world wide
− Expected to reach 366 million by 2030

� Increased risk for heart diseases, blindness, nerve damage and
kidney damage
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Diabetes physiology

� Insulin is secreted from the Pancreas
− Extracted by the liver
− Half-life approx. 5 min.

� C-peptide is co-secreted in equimolar amounts
− Not extracted by the liver
− Half-life approx. 30 min.
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Data – 24H study

� 12 type 2 diabetic patients
� Three standardized meals
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ISR estimate by deconvolution

� C-peptide (the observation) is modelled with a 2-compartment
model

� ISR modelled as a random walk (the third state in x)

dx =




−(k1 + ke) k2 1

k1 −k2 0
0 0 0



 x dt + diag




0
0
σISR



 dωωω

y = C1 + ǫ
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ISR estimate by deconvolution

Smoothed estimate of ISR for individual 1 and 2.
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Systematic Modelling Framework
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Final model
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Individual profile
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Population profile
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Summary

By using stochastic differential equations for PK/PD modelling we
have

� better predictions and simulations

� systematic methods for model development

� methods for finding the best model (LR-tests, etc.)

� statistical methods for model validation and structure modification

� more accurate estimates of the effects of covariates

� more accurate estimates of the dose
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